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MONTE CARLO SAMPLING STRATEGIES FOR LATTICE
GAUGE CALCULATIONS

Gerald Guralnik and Charles Zemach
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and

Tony Warnock
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We have sought to optimize the elements of the Monte Carlo processes
for thermalizing and decorrelating sequences of lattice gauge configura-
tions and for this purpose, to develop computational and theoretical
diagnostics to compare alternative techniques. These have been applied to
speed up generations of Iandom matrices, compare heat bath and Metropolis
stepping methods, and to study autocorrelations of sequences in terms of
the classical momtnt problem.

The efficient use of statistically correlated lattice data is an
optimization problem depending oc the relation between computer times to
generate lattice sequences of sufficiently small correlation and times to
analyze them. We can solve this problem with the aid of a representation
of auto-correlation data for various step lags as moments of positive

definite distributions, using methods known for the moment problem to put
bounds on statistical variances, in place of estimating the variances by
too-lengthy computer runs.
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MONTE CARLO M)!PLING STRATEGIES FOR LATTICE
GAUGE CALCULATIONS

INTRODUCTION

We present here an overview of approach to statistical sampling and

diagnostic techniques which we have found useful for lattice gauge calcula-
tioris for elementary particle physics. The objective was to compute par-
ticle ❑ asses and other particle data in the quantum chromodynamic theorv,
with the fol~r-dimensional space-time continum modeled as a discrete lat-
tice. The dynamical method follows the Feynman path-integral formulation
with thr many-dimensional integrals done by Monte Carlo sampling. The

method has been developed ifitensively in the last decade by many workers,
and seems to be the most pro)nising technique for quantitative success in
the testing of fundamental theories of the strongly-lllteracting elementary
particles.

Inevitably, this technique, or any other, will strain the memory and
computing-speed capabilities of the most modern computers. The physicist’s
expertise must be supplemented by new categories of expertise, in numerical

analysis, statistical analysis, and programming, and these latter sub,jects

generate their own topics for research, one aspect of which is the concern
of t}.ispaper.

We consider the thermalization and decorrelation of tla:ko~ sequences
of calculated data, as generated by random stepping processes of the Metro-
polis type, While our context ~lnd numerical illustrations come from the
lattice gauge probl,=m, Ilollt~Carlo methods for both classical and quantum
statistical mechanic~ raise similar questions, and may have similar
application.

FORMULATION

In broad outline, the formal structure we have to deal with js Lhe
following:

First, there i~ a “base set” consj~~ing Jf a finil.enu.merof elements,

In our case, this is a four-d~meu~ional ]aLtice, with, !ypi(ally, 12 ~ 12 x

12 x 32 or 20 x 20 ~ 20 x 48 siies. The Iatcer size appearr+ tc)br the
mnximum that can br reasonably explored on the Los Alamos CRAY X“OM1’.
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Second, one seeks to construct an ensemble of configurations {Xo,xl,
X2, ... ] each of which is a set of physical data associated with the base
set. In the la&tice gauge case, a confL8uration consists, in part, of an
assignment of a 3 x 3 matrix to each of the links (lines between adjacent
sites) on the lattice. The set of possible matrices A at each link com-
prises the group SU3 and has the invariant ❑easure alp(A) of the group.
Hence the configuration of matrices for the whole lattice has a measure
which is the product of the measures for the links, and, because SU3 is
compact, the total measur> is finite.

Third, the configurations in the ensemble should occur with a
probability

p(x) n @(A)
links

which is a kind of l?olzman weight factor defined by the theory.

Fourth, th~ic is ~ family nf futlctlons f(x) on the Configurations ,

which represent measurements on them. The physical quantities to be cal-
culated appear as averages,

<f> = J f(x)p(x)fldP(A) , (1)

over the ensemble of configurations, and it is to those averages that the
Monte Carlo sampling is applied.

Finally, the ensemble average (1) is replaced hy an average ~ over a
sequence {xo)xl,x2 ... x~) . The problem is then to generate sequences and
deduce the statistical accuracy of the sequence averages, in order to
(a) optimize the efficiency of the sequence generation, and (b) ascertain
the statistical uncertainty in the results.

Consider a random sampling procedure for configurations in which
W(y,x) represents the probability that if a configuration x is at hand,
then a configuration y will be chosen. If the total number of configura-
tions were finite, and equal to n, then W would be an n x n matrix. This
is not really the case, but it will be convenient to pursue our discussion
in the framework of finite n for a while. Then p(x) is taken as having n
discrete values and

z p(x) = 1 , 2 W(y,x) = 1 .
x Y

Then a sequence {xi) may be constructed as follows:

(1) Choose X. arbitrarily. (Typically, all matrices A are taken as
the identity matrix for Xo.)

(2) lf the sequence has been chosen up to term x,, and x. = y, then
choose configuration z with probability W(z,y) and “ac?cept” it?, that is,
aet x. = z, with probability p(z). If it is not accepted, set xi+] = x..
Th~;[l~~~ probability that z ❑ Xi+l follows y = x,

1
is F(z,y), wherr

1
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F(z,y) = P(Z)W(X,Y) + 6XY(I - 2 p(v)w(v,y)) .
v

(2)

Then F satisfies

Z F(z,y) = 1 and
z

~ F(z,Y)P(Y) = p(z) ,

Y

that is, F has eigenvalue 1 for vector $ = {p(z)].

With suitable restrictions on W, one can now show thbt the sequence
{x.) will be distributed with probability p(x). It is sufficient t.osup-
po~e that W is symmetric and connected, i.e., snm~epower of W connects each
x and each y with non-zero probability. This procedure is a prototype of
the so-called heat bath and Metropolis stepping mthods used to generate
lattice gauge sequences. While there are a number of procedures which vary
the form of the prescription, they amount to the s:me thing.

AUTOCORRELATIONS

When stochastic matrices like F and W are considered finite dimen-
sional , they can be treated by elementary algebraic methods; their signifi-
cant pi-operties were first studied by Frobenius and Perron. 1 in particular

(1) F has a non-degener~te eigenvalue e of unity [corresponding, in
our case, to the L..,owneigenvector p(x)].

(2) All other eigenvalues ei have leil: 1.

(3) irl the limit m + CO, IIn converges to a constant matrix Fm all of
whose columns are equal to the eigenvector for e = 1.

Thus, if x,,
th

the i— configuration of the se uence is y, the probabil-
ity that z is lthe (i + m)th configuration

‘%
is F (z,y) and this is p(z),

independent of x, , for all sufficiently
independent of ~, but the magnitude of
depend on choice of W.

The sequence is “thermalized” after

large m. This property is alsc
the “sulliciently large m“ will

m steps if the probabilities for
x ., i 2 m, arc independent of the original choice Xo.
0} the sequence,

The “transient” part
with i < m is ordinarily discarded before a sequence

average is taken. For the remaining, thermalized portion of the sequence,
the “decorrelation time” is the number of steps m such that the distribu-
tion of x is independent of xi for j 2 m. (This means the distribu~’.on

i+j
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approximates p(z) LO within an acceptably small error. ) In lattice gauge
problems thermalization and decorreation times can vary from 5 or 1(Jto
several hundred, depending on ?-hep?oblem and the wisdom of choice of W.

Let the sequence, after discarding of the transient phase, be {x.],
1 S i SN. If the configurations we:e Uncorrelated, the variance id a
sequence average

N.-
; .1 f(xi)i=—

1“=1

WOU1.! be Zk/N, with 02 nstimated by the sample average

o’=+ ! (f(x,)-i)’ .
,. L

‘ i=l

But in the case of
variance, a2

eff:

[

O: ff=a’po +’!
i=]

(3)

(4)

correlation, 2 bv an effective02 must be replaced

(1 - ~) 1~Pi
where pk, the autocorrelation with lag k, is estimated from the sample by

n-k
z (f(xi) - F)(f(Ai+k) - 1)
i=l~k = .—.– ——

N
z (f(x:) - i)’

(5)

i=] 1

This definition implies p. = 1, /p I S I for k 2 1. The sequence w~l~ld be
“decorrelated after r steps” if pk ~or k 2 r is zero to within some accept-
ably smzil error. The sample estimate, Eq. (5) is subject to its own

errors ; more on this later. For r <~ N (which we hereafter assume) the
effective variance simplifies to

(6)

The relevance ~f the autocorrelation~ pk follows from their connection
with the effectiv~ variance 02 for f. They depend, in part, on the
sequence {xi) and in part, on ttfeffrhoiceof measurement f(x),

A practical concrrn can arise as follows:

Suppose an average ~ of a measurement g(x) is sought where the com-
puter time to get g(x.) is much larger than the time to get x. frcm x, .
Suppose we expect that! 100 uncorrelated values of g(x) are enofigh to g~~ k
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to desired accuracy. Should we them compti~.e1000 configurations and com-
pute g(x) for every 10th, or compute 1O,OO(J configurations and g(x) for
every 100th, or do even ❑ore? As will be noted later, 100 values of g(x)
may be Wholl}r inadequate for an internal anal~’sis of the statistical
independence of these values. Also, if there are a variety of Wis avail-
able, how do we access the ❑ost rapidly decorrelating one if the calcula-
tion of the g(x)’s i6 so lengthy? It would be convenient if a proxy
measurement f(x), whose calculation time is short compared to tbe time to
get x. from xi-l, could be relied on to get the decorrelation time for
variouls candidate W matrices.

AUTOCORREIATIONS AS !IOKENTS

We continue, for awhile, to regard W and F as finite dimensional
matrices. The c{ [figurations are indexed by i, 1 5 i 5 n. The probability

function is p., 1 S i $ n.
1

Let Z be the di::gcnal mtrix 410SP (i,i) element is ~. Then by (2),

F= Z2W + diagonal matrix

Hence

Z-lFZ = ZWZ + diagonal matrix

= symmetrix matrix

= LTNJ-l .

U is some orthogonal matrix and D is real and diagonal with diagonal
elements u 1 5 aS n. Then

u’

F = (2U)D(ZU)-1

and

F’ = (Zu)t)k(zu)-]

are representations which will allow us to separate out the f(x)-dependent
and W-dependent aspects of the autocorrelations P

k’

Consider the expression of pk as a sequence averoge, E(4. (5), replaced
by an ensemble ?vernge. Tl~e componerlts of F arc:

F
jm = ~(wja’’u(Lu)-]am .

Let o = 1 represent the uniL ei~er~value UI = 1; then U.
,ad (Z1’), is the column p . TIIe probability ~~hat x.J]t~~ ~~ ~~~y!~U~

!ion inJ1the sequ~nce, id configuration j ix pj ,‘‘and the ~contingertt
probability that Xi+k is rorIfi.~uraLionm if x. is j is (F ). . The
●nsemble average represrntatioll of the cov{;rian?!e~um is, for ‘]%rge N,
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N-j
+ .2 (f(xi) - I)(f(xi+k) - 1) = ;2 f(xi)f(xi+k) - ;2

1=1

where

cd(f) =Zfj”$uja

j

is a kind of projection coefficient of f(x) in the diagonal cordinate frame
for F, and Z; means a sum over all eigenvalucs u~ E?K!?JK Ua= 1“ Also

02= ; .1 (f(xi) - 7)2 + Z-[ca(f)l,
1-1 a

Thus , we arrive at the desired representation,

= Z’ ha(ua)k
‘k ~

where

lca(f)l~
ha = ——

Z;[cu(f)l’

obeys

(7)
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The ~!t~ ha depend on f(x) and its proje~’tion onto the diagonal basis
for F; tL’e Ua depend on F alone, and Iu I < 1 for all u &I the sum. The
“decorrelation time” is the smallest ka such that the~ power of the
maximum u is aufficietly close to zero, according to some error allowance.
The decor!elation time depends on F but not on f(x).

EXTENSION TO THE LENERAL CASE

So far, we have regarded V and F as iinite-dimensional ❑atrices. In
fact, the configurations x form a continuous space wit} a measure equal to
the product of the SU(3) invariant measures for all the lattice links. F
and W are transformations on the configuratiorl space, and by extension, are
transformations an the Hilbert space of functions f(x) with scalar product

<fig> = ~ f~’(x)g(x)ll,i}l(A).

We can write Wi(x) = ~ W(x,y)f(y)lldp(A), with W(x,y) continuous and
bounded, Because the underlying space is compact and its total measure is
finite, W is a Hilbert-Schmidt operator, with the consequence that its
eigenvalue spectrum, ai~.dhence the spectr.iii{ua] of F, is discrete with a
possible point of accumulation only at zero. The generalization of the
Frobenius-Perron result of a unique eigenvector for eigen’~alue unity, with
other eigenvalues strictly less than unity in magnitude is also avail.~ble.a
Therefore, Eq. (7) remains valid, as an infinite sum, with only a finite
number of eigenvalues outside a neighborhood of zero,

The kx autacorrelation now appears as the kQ moment of a discrete
distribution dc limited to the interval (-1,1). We believe that for our
sampling procedures, the interval is always in (0,1); (i.e., there are no
“anf-icorrelations”) hut have not been able to prove it; this is probablv a
simple oversight on our part.

If the first 2m moments, i.e. (p. = 1, PI, ....p ) of du are known,
then thf. g~uss quadrature procedure allows, by stand%m~~ methods, the cal-
culatio,l of m weights (approximate ki) and m nodes (estimates for the
eigenva’iues) such tha~

with the approximation exact for g(x) a polynomial of degree S 2m-1.
The eigenvalue estimates will tend to be more acc~lrate for the largest
eigenvalues , which is what we want i~ order 11> eftimaLe decorrelation
rates . On the other hand, the calculations of nodes from moments can be
sensitive to rather small errors, including statistical errors in the
moments, and in our study, were ver> sensitive. Bartlett4 has given an
approximation to the variance of a sample estimate for autocorrelations
based on assumptiol~ of a multinormal parent distribution; he finds
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var(pk) -;[C? + 21(p.)2]

j’

(8)

for large k, i.e., var (Ph) accumulates with the correlations themselves,
and the noise level for large or even uoderate k cau disrupt a calculation
of gauss data and obscure the assessment of a correlation time from the
list of pk. In our lattice gauge experiments, N = 1000 was generally an
insufficient length for a sequence, and N = 10,000 often barely sufficient.

SOHE APPLICATIONS

Autocorrelations on averages over plaquette traces (traces of the
product of a sequence of link ❑atrices along a closed, rectangular path of
links) were done on our 12 x 12 x 12 x 32 lattice calculation of particle
masses, for plaquettes from 1 x 1 up to 6 x 6. These indicated decorrela-
tion after 30-50 steps, but error estimates on our method were less refined
at the time, and we may have judged too conservatively.

On a more systematic basis, we analyzed, on a 3 x 3 X 3 x 6 lattice,
decorrelation of the 1 x 1 plaquette trace average, over a wide variety of
sequence-generating algorithms of the Metropolis and heat bath types. The
algorithm already proposed s for trace-biased random szlection of stepping
matrices held up very well, on a comparative basis, and we beli?:ve that PI
for the 1 X 1 plaquettes, or at least the first 2 0: 3 p’s servt well as a
diagn~stic to discriminate among candidate algorithms. Over a ran~e of ~
parameters from 5 to 7, the referenced method was insensitive to thv choice
of average trace for the random stepping matrix; anything from 2.6 to 2.8
gave nearly optimum decorrelation rate. In terms of net computer time, a
hit rate of about 20 was cost-effective over higher rates, although 50-6G
hits were needed to saturate the heat-bath limit. The latter, in turn
seemed more cost-effective than the Pieterinen heat-bath. A discussion of
the Cabibbo-Marinari approach will be given elsewhere. Because of the
noise in statistics, there were (infrequent) inconsistencies in the
apparent predictions even for 10,000 step sequences, which could be recti-
fied by comparing several autocorrelations, or by looking at a 20)000 run
in suspicious cases.

We sought to estimaLe the eigenvalues for a 20-hit algor}thm on a
6 x 6 x 6 x 6 lattice and also the weights for plaquette averages, of sizes
1 x 1 to 3 X 3 and for certain quantities E., B. (gauge analogues of
electric and magnetic fields) relevant to pr?edic~ing glueball masses.
Again, a run of 10,OOU configurations, taking 5.8 hours of CRAY-XMP com-
puting time.

The magnitude of grea est interest is the maximum eig;envalue u
k

the inequality pk S (umax) gives a direct estimate of decorrelationm?!t~s
The ~implest estimate IS

l/m
u = lim(m + ~) (ph,)

max
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Flore generally. one can set

= ~ hi(ui)k fo~ O S k S 2m-1 ,
‘kil =

th
corresponding to an 2m order gauss approximant to da. Alternatively, set

fj = ; hi(ui)k forO$kS2m
i=()

with U. set at O (h. contributes only to so), which corresponds to a left
Radau apprcximant of order 2m + 1.

The first two recipes necessarily provide a sequence of underestimates
of u and one hopes to see the sequence saturating at some upper bound.
But ‘_%? ’proved difficult to make use of pk’s in the gauss or radau
approaches for k 2 4 or 5 because of the noise in the statistics.

Table I shows how the (p )1’’” estimate for K fares fcr 1 x 1,
2X2, 3 x 3 plaquette averagesmand an cverall E-fie?~+ B-field average,
Convergence for increasing m is offset by increasing percentage of noise
for increasing m. The sequence of estimates must terminate when p is
smalle[ than the standard deviation, which is about 0.015, as inferred ?rom
Eq. (8). A Umax in the neighborho~d of-0.8 is indicated.

Potentially more accurate (except for the noise!) is ‘Table II. The
gauss (4) model, using the first fo~~rautocorrelaton data and sup?lying two
nodes plus two weights suggests a Umax again in the neighborhood of ().8,
and a substantially smaller (hence ~ess accurately estimated) node. The
other models, which utilize higher aJtocorrelations do not add much to this
picture. Thus , the gauss (6) model has a u of 4.10 and some negative u’s,
albeit with extremely small h.s; these are theoretically not possible for a

nciseless set of autocorrelations.

One disturbing feature is the suggestion of u of about 0.94 for the
3 x 3 plaquette r’or radau (7) (and also for gausmsaT8) and radau (9), not
~hown) . Either this is a statistical fluctuation, or the data depending on
long-distance correlations in the lattice may be coupled with a small, but
not ignorable weight to a slowly decorrelating r.erm not seen in the other
columns because of much weaker coupling. A run ~f, say, 90,000 steps would
reduce statistical error by z factor of three and settle this question, at
a cc:lsiderable cost in computer time.

The standard deviation of an estimated ~ from a sequence {x} of N
terms can be written

(9)
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where y is the addition factor due to autocorrelati~n.

l%hrded as follows:

By Eq. (6), it

can be

1 s (Ycorr )% l+2zpksl+2z(u )2 ~ [(] + umax)/(l - umax)]~fz
❑ a x

If, from a sequence of N terms, only every nx configuration is

retained for calculation of f(x), then the effective maximum eigenvalue is
(Umax)n and Eq. (9) is replaced by

stan. dev. = U (n)

m ‘Corr

(lo)

with

n 1/2

()

] + (Umax)

YCorr(n) =
1-

T
(u ) “
max

Illustrative values of ycorr (n) are tabulated in Taole III. It is seen
that if the esti~ate G = 0.8 is relied bpon for our 6 x 6 xb x 6

lattice, very little is gmaalxned by taking n > 10 for the sequence aveK?~;,ng

of a measurement f(x), even if the computation of f(x) is long compared to
the computation of Xi+l from xi.

1

2

3

4

5
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Table II

Model——

gauss (4)

radau (5)

gauss (6)

radau (7)

Table I.

m= 2

m= 4

m=6

m= 8

l’m for various latticeu~ax estim~ted by (Pm)

functions.

1X1 2X2 3x3 E-field

.595 .657 .631 .603

.635 .709 .718 .679

.648 .742 .767 .724

.695 .772 .794 .759

m= 10 .752 .802 .825 .792

m= 12 .;;59 .808 .829 .800

m=14 .789 .834 .786

m ❑ 16 .801 ,828 .799

m= 18 .812 ,854 .815

Nodes and weights by various quadrature mode>.< for various
lattice functions.

1X1 2X2——.— ~ .—

u h u h— — ——

.26 .40 .07 .26

.74 .60 .76 ,?4

O .24 0 .16

-.52 -.03 .27 .13

,68 .79 .77 .’?1

(complex roots) .06 .26

.76 .74

4.10 10-5

(complex roots) O .23

-.53 -.005

.74 .77

1.32 .008

3x3 E-field——— —.

u

.05

.80

0
.73

1,18

-.20

.24

.84

0
-2.12

.64

.94

h——

.38

.62

.32

.63

05

.09

.38

.52

.31

.0007

.44

.25

u h——. —

.13 .42

.79 .58

0 .50

-.18 -.14

.76 sb;

-.. 6 -,0005

.11 .’10

,77 .60

0 .35

-,45 -.02

,73 .6’?

1s37 .006

—. . -..—-- —-----—
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Table 111. Values of ycorr(n). [See Eq. (10)]

u
❑ ax 5- n=lG n=15 n=20 n=25n = — .

.90 1.97 1.44 1.23 1.13 1.07

.80 1.40 1.11 1.04 1.01 1.00

.70 1.18 1.03 1.00 1.00 1.00

.60 1.08 1.01 1.00 1.00 1.00


